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1. Introduction

In recent three decades attention of the specialists involved in solving
extremum problems has often been attracted to nonconvex problems of
optimization [1, 2], which may have a sufficiently large number of local
solutions and stationary (critical, say, in the sense of Ferma or Lagrange
conditions) points, which are rather far from – even in the aspect of the
goal functional – from the global solution, which is so essential from the
practical viewpoint. Meanwhile, convex problems, as known from [3]-[5],
possess the property that even each local solution turns out to be also
global.

Noteworthy, in practice, convex problems occur rather seldom, while
there are many examples of convex problems in textbooks [1]-[5]. Further-
more, in applied problems, nonconvex structures most frequently occur in
a hidden form. As a consequence, the specialists not always pay attention
to their presence and to the nature of their occurrence, as, for example,
in problems of hierarchical optimization and optimal control of nonlinear
systems. One knows that it is difficult to hope for any success without
knowing the structure of the convexity. Note that rather frequently noncon-
vex structures are generated by convex ones (complementing of the convex
set, maximization of the convex function, etc.)[1, 2, 6].

On the other hand, specialists in applied problems do not think about
the correctness of direct application of classical methods of optimization in
nonconvex problems, while the numerical results are interpreted only in the
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content aspect, without thinking of the fact that all classical optimization
methods (Newtonian ones, methods of conjugate gradients, methods of
feasible directions, barrier methods, etc.) converge to the global solution
only in convex problems [7]-[6].

At the same time, in nonconvex problems, the direct application of stan-
dard methods may have unpredictable consequences [1]-[5], and sometimes
may even distract one from the desired solution. So, it is quite natural
(but hardly ever grounded) is the reaction of the specialists propagating
methods of direct selection – such as the method of branches and bounds
(and cuts methods), which, as known, suffer curse of dimension, when the
volume of computations grows exponentially side by side with the growth
of the problem’s dimension [1, 2]. We are sure, there exists also another
way of solving nonconvex problems of high dimension [6]-[24].

In the recent two decades, we have managed to construct a theory
of global search, which is harmonic from the viewpoint of the theory of
optimization and which unexpectedly has turned out to be rather efficient
in the aspect of computations, especially for the problems of high dimen-
sions. Necessary and sufficient Global Optimality Conditions (GOCs) for
the principal classes of nonconvex problems have turned out to be the kernel
of this theory (see below) [6].

On the other hand, we have proposed a family of local search methods
(LSMs), which, on the one hand, in some cases develop methods earlier
known for the special problems and, on the other hand, this family of
LSms represents a joint ensemble of methods, which is harmonic from the
viewpoint of GOCs [6, 7, 10, 11].

Meanwhile, the procedures of escape from the stationary or local solu-
tions, which are based on GOCs, are unique and quite efficient even in case
of any simplest implementation [6, 7].

The approach elaborated has been tested on a wide field of nonconvex
problems (some part of which is represented below). It has demonstrated
an unexpected efficiency during the numerical solving problems of high di-
mension. Note, convex optimization methods are successfully used ”inside”
the procedures of local and global search proposed [6]-[23].

2. Classification

On the present stage, the class of d.c. functions DC(IRn), which may be
represented in the form of difference of two convex functions

f(x) = g(x)− h(x), x ∈ IRn, g, h ∈ CONV (IRn). (2.1)

is considered to be rather wide for the consideration. This class possess
several remarkable properties.
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CONTEMPORARY METHODS FOR SOLVING NONCONVEX PROBLEMS 3

a) Set DC(IRn) has been generated by the well-studied class — the cone
of convex functions and represents a linear space [1, 6].

b) DC(IRn) includes the well-known classes such as dually differentiable
functions, power and trigonometric polynomials, I.I.Eremin’s functions, etc.
[1, 6].

c) An arbitrary continuous function on a compact K ⊂ IRn may be
arbitrarily approximated (in the topology of homogeneuos convergence) by
a function from DC(K) [1]-[6]. Consequently, any continuous problem of
optimization on a compact may be approximated by a problem of optimiza-
tion with d.c. functions. Anyway, note, if f represents a d.c. function, then
there exists an infinite number of d.c. representations of the form (2.1), for
example, of the form of difference of strongly convex functions.

Closeness of the DC class with respect to the majority of operations,
which are used in optimization, is also an essential property of this DC
class, which is important from the optimization viewpoint. For example,
a sum, a difference, the module, the maximum, the minimum, etc. of the
d.c. functions occur also in the class DC(IRn).

At the same time, the number of problems with d.c. functions is so large
that the majority of the specialists, who have a long-time experience of
solving problems of d.c. programming are sure [1, 2] that all (or almost all)
nonconvex optimization problems are d.c. problems. In this connection, the
following classification of d.c. programming problems may be considered
to be natural.

1. D.C. minimization

(P) f(x) = g(x)− h(x) ↓ min, x ∈ D, (2.2)

where g(·), h(·) are convex functions, and D is a convex set, which may be
given by either inequalities or by equalities.

2. Problems with d.c. constraints, which are reducible to the
following problem

f0(x) ↓ min, x ∈ S,
f(x) = g(x)− h(x) ≤ 0,

}
(2.3)

where g(·), h(·) are convex functions, S ⊂ IRn, f0(·) is a continuous func-
tion.

Particular cases of these problems are:
3. Convex maximization

h(x) ↑ max, x ∈ D, (2.4)

(when g ≡ 0 in (2.2)).
4. Problems with inverse-convex constraints

f0(x) ↓ min, x ∈ S,
h(x) ≥ 0,

}
(2.5)
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(g ≡ 0 in (2.3)).
Note, any quadratic problem of optimization with sign-definite matrices

occurs in this classification.

3. Local search

Unlike that in known procedures (such as procedures of ”branches and
boundaries” , cuts, etc.), which, say, ”have distracted”, as known, contempo-
rary methods of convex optimization, we insist on the obligatory but ”in-
direct” application of these methods in global optimization [3, 5]. For
example, as regards the problem of d.c. minimization (P)–(2.2), the basic
element, the ”corner stone” — in our opinion — is solving the following
convex problem (linearized at a current point xs ∈ D)

(PLs) g(x)− 〈∇h(xs), x〉 ↓ min x ∈ D. (3.1)

Depending on the choice of the method of solving this problem (”the corner
stone”), the global search (the total ”building”) may turn out to be either
successful or not: efficient or not, ”stable” with respect to the choice of the
initial approximation or capable of obtaining – in the best case – simply a
feasible point.

The local search itself (Local Search Procedure, LSP) may imply, for
example, the sequential (likewise in the method of direct iteration) solving
the problems (PLs)− (3.1). If we know xs ∈ D then we can find xs+1 ∈ D
in the capacity of an approximate solution (PLs). It is surprising that the
process in this case converges (w.r.t. the function f = g−h) [6] to a solution
x∗ of the linearized problem

(PL∗) g(x)− 〈∇h(x∗), x〉 ↓ min x ∈ D,

(x∗ is a critical point w.r.t. the method of local search). Under additional
assumptions of strongly convex decomposition f = g − h it is possible to
provide for the convergence of xs → x∗.

Very frequently this method gives the global solution on small dimen-
sions (n ≤ 7−10), what adds to the set of difficulties related to constructing
good (”bad”) initial approximations for testing the global search.

Special methods of local search have been developed for the problems
with d.c. constraints [11, 12]. These methods have also been grounded on
considering linearized problems of the form:

(LPs)
g(x)− 〈∇h(xs), x〉 ↓ min,
x ∈ S, f0(x) ≤ ξk.

}
(3.2)
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4. Global search

The general procedure of global search includes the two parts:
a) local search;
b) procedures of escape from a critical point, which is based on GOCs

[6, 7], with subsequent inclusion of the procedure of local search.
The point is that GOCs possess a so called algorithmic (constructive)

property, which allows one — in case of violation of these GOCs — to
construct a feasible point, which is better than the point under scrutiny.

Indeed, for example, for GOCs for the problem (P) − (2.2) have the
following form [6, 7]:

z ∈ Sol(P) ⇒ ∀(y, β) ∈ IRn × IR :

h(y) = β − ζ, ζ := f(z), (4.1)

g(x)− β ≥ 〈∇h(y), x− y〉 ∀x ∈ D. (4.2)

If for some (ŷ, β̂) from (4.1) and x̂ ∈ D (4.2) is violated

g(x̂) < β̂ + 〈∇h(ŷ), x̂− ŷ〉,

then the convexity of h implies that

f(x̂) = g(x̂)− h(x̂) < h(ŷ) + ζ − h(ŷ) = f(z),

or f(x̂) < f(z). So, x̂ ∈ D is ”better” than z. So, when selecting the
”perturbation parameters” (y, β) in (4.1) and solving linearized problems
(see (4.2)),

g(x)− 〈∇h(y), x〉 ↓ min, x ∈ D, (4.3)

(where y is not obligatorily feasible (!!!)), we obtain a family of initial
points x(y, β) for the LSP. Furthermore, on each level ζ it is not necessary
to conduct selection inside all the set of (y, β) — it is sufficient to discover
the violation of (4.2) only for one pair (ŷ, β). After that, it is necessary to
proceed to a new level zk+1 := x̂, ζk+1 := f(zk+1), and start the procedure
from the very beginning.

A wide field of computational experiments has confirmed an unexpect-
edly high efficiency of the approach proposed, especially for the problems
of high dimension, even in the case of program implementations conducted
by students and postgraduates [7], [6]–[12].
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5. Applied problems

5.1. Bimatrix games and bilinear programming

Bimatrix games reflect the conflict of the two parties, each one having a
finite number of strategies. Some economics, engineering and ecological
problems may be represented in the form of bimatrix games, in which
the Nash equilibrium is the common concept. We have elaborated a new
method for finding situations of Nash equilibrium in bimatrix games, which
is based on the so called variational approach to solving game problems [7].
This means that the search for the Nash situation (x∗, y∗) ∈ Sm × Sn,
where Sm, Sn are canonical symplexes, is reduced to solving the following
nonconvex problem of mathematical programming:

F (x, y, α, β)
4
=〈x, (A + B)y〉 − α− β ↑ max,

xT B − βen ≤ 0n, x ∈ Sm, Ay − αem ≤ 0m, y ∈ Sn,

}
(5.1)

where ep = (1, 1, ..., 1)T ∈ IRp, Sp is the canonical symplex, p = m,n.
To the end of solving this problem, we have developed and grounded

special algorithms of local and global search. The algorithms constructed
have been tested on specially generated bimatrix games of high dimension
(up to 1000× 1000).

Furthermore, we have elaborated a parallel version of the algorithm of
global search for Nash equilibria in the bimatrix games, which has allowed
us to obtain an almost linear parallel increase of the rate of the process (by
5 to 6 times on 8 processors).

Next, the technique of global search in bimatrix games was generalized
to be applied to the problems of bilinear programming [7] of the form:

F (x, y) = 〈c, x〉+ 〈x,Cy〉+ 〈d, y〉 ↑ max
(x,y)

,

x ∈ X
4
= {x ∈ IRm | Ax ≤ a, x ≥ 0},

y ∈ Y
4
= {y ∈ IRn | By ≤ b, y ≥ 0}.

 (BLP )

5.2. Hierarchical problems and variational inequalities

Hierarchical problems are encountered in practice because of impossibility
of accumulation of the total available information at the upper level in
the process of investigation of structurally complex control systems (so-
cial, economic, ecological-economic ones, etc.) and possess some hidden
nonconvexity. In particular, problems of bilevel programming represent
extremum problems, which – side by side with standard constraints, which
are expressed in terms of equalities and inequalities, include the constraint
described with the aid of an optimization subproblem representing the
lowest level of the bilevel problem.
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a) Linear bilevel problems
Consider the problem:

F (x, y)
4
= 〈c, x〉+ 〈d, y〉 ↓ min

x
,

(x, y) ∈ X
4
= {x ∈ IRm | Ax ≤ b},

y ∈ Y∗(x)
4
= Arg min

y

{〈
d1, y

〉
| y ∈ Y (x)

4
= {y ∈ IRn | A1x + B1y ≤ b1}

}
 (BP)

To the end of its solving we have proposed and tested the two approaches:
i) an approach based on the application of the penalty method in combina-
tion with the global search strategy (GSS) in problems of d.c. minimization
and ii) an GSS for the problems with d.c. constraints.

b) Nonlinear bilevel problems
Consider the following quadratic-linear problem of bilevel programming:

F (x, y)
4
=

1
2
〈x,Cx〉+ 〈c, x〉+

1
2
〈y, C1y〉+ 〈c1, y〉 ↓ min

x,y
,

(x, y) ∈ X
4
= {(x, y) ∈ IRm × IRn | Ax + By ≤ a, x ≥ 0},

y ∈ Y∗(x)
4
= Arg min

y
{〈d, y〉 | y ∈ Y (x)},

Y (x)
4
= {y ∈ IRn | A1x + B1y ≤ b, y ≥ 0}.


(BP)

The following two types of solutions in such a problem are investigated:
the optimistic one and the pessimistic (guaranteed) one.

We have elaborated a software complex intended for finding optimistic
solutions in quadratic-linear problems of bilinear programming on the ba-
sis of the technique proposed earlier, which is based on the reduction of
bilevel problems to a family of mathematical programming problems with
a d.c. goal function. Testing of the software complex elaborated has been
conducted on a large set of randomly generated problems of diverse com-
plexity and dimension (up to 150 × 150). This testing has demonstrated
that the methods proposed are rather efficient. Note, results of solving
quadratic-linear problems of such a dimension cannot be found in the
available literature.

5.3. Linear problem of complementarity

A similar variation approach has been employed for solving the well-known
linear complementarity problem (LCP), which implies finding the pair of
vectors (x, w), which satisfy the following conditions:

Mx + q = w, 〈x,w〉 = 0,
x ≥ 0, w ≥ 0,

}
(5.2)

where x,w ∈ IRn, vector q ∈ IRn and the real sign-definite (n×n)-matrix M
are given. Many physical, engineering problems (the braking problem; the
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problem of contact; the problem of viscoelastic twisting), some economic
problems (the problem of optimal constant basic capital; the problem of
market equilibrium) and problems of computational geometry are often
reduced to LCP ones. To the end of solving this problem we have applied
the variational approach, which has given the possibility to reduce LCP
to the problem of d.c. minimization. The results of testing the algorithm
of global search in the problem stated have demonstrated an obvious high
efficiency of the technique proposed. This result has been obtained on a
sufficiently wide set of test examples of high dimension. We have solved
nonconvex problems up to the dimension of 400 [13].

5.4. Problems of molecular biology and nanophysics

Consider the problem of minimization of the functional of complete energy
in the model of charge transfer in a DNA molecule:

F (x) = 〈x, Hx〉 − 1
2

n∑
i=1

ki (xi)
4 ↓ min

x
,

x ∈ X
4
= {x ∈ IRn | ϕ(x) = 0} ,

 (P )

where H is a 3-diagonal (n × n) matrix with nonnegative components,

ki > 0 i = 1, . . . n, and function ϕ(x)
4
= 〈x, x〉 − 1. To the end of solving

this problem we have used the strategy of global search in problems of d.c.
minimization.

5.5. Problems of financial and medical diagnostics

Such problems are well-know as applied ones. These are often interpreted
as the problems of generalized separability. For example, if the two sets of
points A and B are characterized by the matrices A = [a1, . . . , aM ], B =
[b1, . . . , bN ], aj , bj ∈ IRn, then the problem of polyhedral separability may
be reduced to the problem of minimization of the nonconvex nondifferen-
tiable error function

F (V,Γ) = F1(V,Γ) + F2(V,Γ), (5.3)

F1(V,Γ) =
1
M

M∑
i=1

max{0, max
1≤p≤P

(〈ai, vp〉 − γp + 1)},

F2(V,Γ) =
1
N

N∑
j=1

max{0; min
1≤p≤P

(−〈bj , vp〉+ γp + 1)}.


(5.4)

Generalization of the theory of global search to be applied to the nonsmooth
case has given the possibility to develop a software complex intended for
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solving nonsmooth problems of d.c. minimization [21]. This complex has
proved to be rather efficient on a set of test examples characterized by
high dimension (borrowed from the literature) and also on the examples
constructed by the technique random generation [10].

5.6. Discrete programming

a) Problems of maximum clique and of maximum weighted clique
The maximum clique problem (MCP) implies the search for a maxi-

mally complete subgraph in a given non-oriented graph. In 1993, DIMACS
Challenge related to this problem was conducted. Test examples as well as
results of operation of the algorithms were published.

MCP conducted on the basis of the continuous Motskin-Strauss problem
statement and the I.Bomze regularization, may be represented as a problem
of maximization of the sign-definite quadratic form on the canonic symplex

F (x) =
∑

(i,j)∈E
xixj = 〈x,Ax〉 ↑ max,

x ∈ Sn = {x = (x1, ..., xn)T |
∑n

i=1 xi = 1, xi ≥ 0, i = 1, .., n},


where E is a set graph’s edges; A is its contingency matrix.

We have proposed a different continuous statement of the MCP

φ(x)
4
=

n∑
i=1

x2
i ↓ min, x ∈ S,

Φ0(x)
4
=

〈
x,Ax

〉
≤ 0,


where A is the contingency matrix of the complementarity graph, and the
equivalence of this problem statement and the statement of MCP has been
proved.

With the use of above problem statements we have developed the algo-
rithms intended for solving MCP and the conducted computational exper-
iments, which has led to the following conclusion. The approach we have
proposed is competitive on many classes of text examples, and its further
development and parallelization may allow us to confirm the success gained
[12].

Generalization of the results obtained for MCP in order to apply these to
MWCP has been conducted. The numerical experiment related to solving
MWCP for the continuous problem statements on the weighted graphs
from the DIMACS library has demonstrated high efficiency of the approach
proposed.

b) The problem of p-median and the problem of dislocation
with preferences

The problem of p-median is a well known NP-hard problem, which
implies finding of p nodes (medians) of the weighted oriented graph to
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the end of minimization of the total distance from the nearest medians to
non-median nodes of the graph.

Having introduced the binary variables yi and xij), which correspond to
the nodes i ∈ V and to the edges ij ∈ A, we obtain the following problem
of integer-numeric linear programming:

∑
ij∈A

wijxij ↓ min
x,y

,∑
j∈V,i6=j

xij + yi = 1 ∀i ∈ V, xij ≤ yi ∀ij ∈ A, i ∈ V,∑
i∈V

yi = p, yi, xij ∈ {0, 1} ∀ij ∈ A, i ∈ V.

(5.5)

The given problem is the basic one for many problems of dislocation, and
it is used in the cluster analysis, where the set of objects must be separated
into p subsets of similar objects. The similarity of objects is expressed in
terms of the weight of the corresponding graph’s edge. As far as high-
dimensional problems of ”optimal dislocation” related to constructing of
transport vehicles is concerned, we have elaborated an algorithm capable
of solving problems defined on the graphs having more than 5 · 104 nodes
and 5 · 106 edges.

Besides a simplest problem of p-median we also considered a more gen-
eral model — the problem of p-median with the preferences of the cus-
tomers. This problem possesses a natural bilevel structure, when a set of
median nodes is chosen on the upper level to the end of minimization of
the distance down to non-median ones, while on the lower level there takes
place correlation of the non-median nodes to the medians chosen on the
upper level by minimizing the function of preferences. The discrete models
obtained may be applied in systems of machine vision, which are intended
for testing the quality of goods manufactured.

c) Problems of multi-dimensional knapsack
As far as the known combinatorial problem of multi-dimensional knap-

sack, which is reduced to the continuous inverse-convex problem of the
following form is concerned

〈c, x〉 ↑ max, 〈a, x〉 ≤ β,

‖ x− e

2
‖2 −n

4
≥ 0,

x ∈ Π = {x ∈ IRn | 0 ≤ xi ≤ 1}.

 (5.6)

we have developed new methods of local search, algorithms of global search,
which represent a combination of known approaches and procedures in
discrete optimization, which follow from the GOC. These methods have
proved their comparative efficiency in testing on the well-known problems
from the library DIMACS related to discrete optimization.
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6. Optimal control (OC)

We have also proposed necessary and sufficient GOCs [8, 24] for the non-
convex OC problems of the form

(P1) : J(u) ↓ min
u

, u ∈ U , (6.1)

J(u) = g1(x(t1))− h1(x(t1)) +
∫
T

[g(x(t), t)− h(x(t), t) + f(u(t), t)]dt,

U = {u(·) ∈ Lr
∞(T ) | u(t) ∈ U ⊂ IRr ∀t ∈ T}, (6.2)

where the functions g1(x), h1(x) and x → g(x, t), h(x, t), t ∈ T are convex
and differentiable within, say, the linear control system

ẋ(t) = A(t)x(t) + B(u(t), t), x(t0) = x0. (6.3)

On this basis of the GOCs we are developing the theory of global search, in
particular, methods of local and global search [9, 15, 16]. We have already
conducted a series of numerical experiments with high-dimensional test
OC problems, in which there may be, for example, 60000 processes, which
satisfy Pontryagin’s maximum principle and have only one global solution.
Our approach has shown high efficiency for all the problems generated. In
all the cases it was possible to find the globally optimal process by passing
through only a limited number of stationary (PMP) processes.
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Abstract. This paper contains the review of the results obtained in the last years
in the theory and numeric methods of the solution of nonconvex optimization problems
and optimal control problems.

Keywords: nonconvex optimization, d.c. function, local search, global search

Стрекаловский Александр Сергеевич,доктор физико-математических
наук, профессор, Институт динамики систем и теории управления СО
РАН, 644033, Иркутск, ул. Лермонтова 134, тел. (3952) 45-30-31, факс
(3952) 51-16-16, (strekal@icc.ru)

Strekalovsky Alexander, Institute for system dynamics and control theory
SB RAS, 134, Lermontov St., Irkutsk, 664033, professor, Phone:(3952) 45-
30-31, Fax: (3952) 51-16-16, (strekal@icc.ru)

strekalovsky_igu_en.tex; 6/11/2012; 13:18; p.13


